Study on In-Vitro Cytotoxic and Thrombolytic Activity of Ethanolic Extract of *Elatostema*Papillosum Leaves

Naymul Karim¹, Md Hossan Sakib^{1,2*}, Rana Dhar¹, Mohammad Shahadat Hossain^{1,2}, Asif Al Mahmood², Muhammad Sazzad Hossain^{1,2}, Sadequr Rahman¹

¹Department of Pharmacy, International Islamic University Chittagong, Bangladesh ²Department of Pharmacy, University of Science and Technology Chittagong, Bangladesh

Abstract: The present study was designed to investigate the cytotoxic and thrombolytic activity of ethanol extract of leaves of *Elatostema papillosum*. Ethanol extract of *Elatostema papillosum*, was used to evaluate its cytotoxicity in Brine shrimp lethality bioassay where vincristin sulphate was used as standard drug. Thrombolytic effect of the fraction was investigated in clot lysis experiment. In Brine shrimp lethality bioassay, LC50 value of the extract was 2467.13μg/mland vincristin sulphate served as the positive control showed LC50 value 10.51 μg/ml. The extract exerted 50.86%lysis of the blood clot in thrombolytic activity test while 85.25%. And7.75%lyses were obtained for positive control (streptokinase) and negative control respectively. Compared to vincristin sulphate, it is evident that the ethanol extractof leaves of *Elatostema papillosum were* cytotoxic. So, the extract possessed considerable thrombolytic activity. Which compounds is responsible for the present pharmacological actions and to know their mechanism of action, extensive pharmacological and phytochemical experiments are essential.

Keywords: Elatostema papillosum, Cytotoxic Activity, Thrombolytic Activity, Vincristine, Streptokinase.

1. INTRODUCTION

Since ancient times plants have served as a natural source of treatments and therapies such as aspirin, quinine, and coffee. Today, scientists are using these renewable resources to produce a new generation of therapeutic solutions. Plants improved through the use of biotechnology can produce the essential proteins for innovative treatments for diseases such as cancer, HIV, heart disease, diabetes, Alzheimer's disease, kidney disease, Crohn's disease, cystic fibrosis, multiple sclerosis, spinal cord injuries, Hepatitis C, chronic obstructive pulmonary disorder (COPD), obesity, arthritis and iron deficiency. The use of natural products with therapeutic properties is as ancient as human civilization and, for a long time, mineral, plant and animal products were the main sources of drugs [1]. Vincristine and vinblastine from Catharanthus roseus, atropine from Atropa belladonna and morphine and codeine from Papaver somniferum. It is estimated that 60% of anti-tumour and anti-infectious drugs already on the market or under clinical trial are of natural origin [1]. The vast majority of these cannot yet be synthesized economically and are still obtained from wild or cultivated plants. Natural compounds can be lead compounds, allowing the design and rational planning of new drugs, biomimetic synthesis development and the discovery of new therapeutic properties not yet attributed to known compounds [2]. In addition, compounds such as muscarine, physostigmine, cannabinoids, yohimbine, forskolin, colchicine and phorbol esters, all obtained from plants, are important tools used in pharmacological, physiological and biochemical studies [3]. Cytotoxicity is the quality of being toxic to cells. Cells exposed to a cytotoxic compound can respond in a number of ways. The cells may undergo necrosis, in which they lose membrane integrity and die rapidly as a result of cell lysis; they can stop growing and dividing; or they can activate a genetic program of controlled cell death, termed apoptosis. Cells undergoing

International Journal of Life Sciences Research

ISSN 2348-3148 (online)

Vol. 3, Issue 2, pp: (93-99), Month: April - June 2015, Available at: www.researchpublish.com

necrosis typically exhibit rapid swelling, lose membrane integrity, shut down metabolism, and release their contents into the environment upon lysis. Apoptosis is characterized by well-defined cytological and molecular events, including a change in the refractive index of the cell, cytoplasmic shrinkage, nuclear condensation, and cleavage of DNA. Cytotoxicity assays are used widely in drug discovery research to help predict which lead compounds might have safety concerns in humans before significant time and expense are incurred in their development. Other researchers study mechanisms of cytotoxicity as a way to gain a better understanding of the normal and abnormal biological processes that control cell growth, division, and death.^[4]

Thrombolysis is the breakdown (*lysis*) of blood clots by pharmacological means. It is colloquially referred to as *elot busting* for this reason. It works by stimulating fibrinolysis by plasmin through infusion of analogs of tissue plasminogen activator (tPA), the protein that normally activates plasmin. Thrombolytic therapy is the use of drugs to break up or dissolve blood clots, which are the main cause of both heart attacks and stroke. Thrombolytic medications are approved for the immediate treatment of stroke and heart attack. The most commonly used drug for thrombolytic therapy is tissue plasminogen activator (tPA), but other drugs can do the same thing. ^[5]

Elatostema papillosum yield Herbs perennial, monoecious or dioecious, 25-50 cm tall. Stems ascending or erect, simple or branched, crispately pubescent. Leaves alternate; nanophyllscordate or ovate, 3-10 mm; stipules lanceolate-linear, 5-7 \times 0.5-0.8 mm, glabrous, without cystoliths; petiole 1-5 mm; Female inflorescences solitary, 4-6 mm in diam.; peduncle ca. 1 mm; receptacle nearly orbicular, 3-5 mm in diam.; bracts triangular; bracteoles lanceolate-linear. Male flowers 4-merous^[6]

2. MATERIALS AND METHODS

Collection of Plant Materials:

The leaves of *Elatostema papillosum*were collected from Chittagong local forest area; theleaves of *Elatostema papillosum*were collected at their fully mature form. After cleaning, the leaves were taken and splitting the peal, then air dried for 8 days, and then kept in an oven at 45°C at 72 hours. 250 gm of dried powder was cold extracted with Methanol. Dried powder soaked with methanol for 7 days. Then filtered to take the concentrated extract, extract containing beaker was placed on the water bath (at 40°C-45°C) to evaporate the solvent from the extract. [7]

Preparation of Extraction:

The extract is prepared by cold extraction process. In this process the coarse powder was submerged in ethanol (95%) since ethanol is the most common solvent for extracting most of the constituents present in herbal materials. Amber glass bottle were used for this purpose, which were kept at room temperature and allowed to stand for 7 days with occasional shaking and stirring. When the solvent became concentrated the contents were first decanted by using cotton and then filtered through Whatmann No.1 filter paper. The filtrate so obtained was then concentrated to dryness through the evaporation of solvent using rotary evaporator. Finally we got the concentrated semi-solid extract. The concentrated were then used as crude extract of respective test experiments. In our present investigation, we used ethanol extractfor cytotoxic and thrombolytic activity. [8]

In-VITRO Cytotoxic Study:

Brine shrimp lethality bioassay is widely used in the bioassay for the bioactive compounds. Here simple zoological organism (*Artemia salina*) was used as a convenient monitor for the screening. The dried cyst of the brine shrimp were collected from an aquarium shop (Chittagong, Bangladesh) and hatched in artificial seawater (3.8% NaCl solution) with strong aeration for 48 hours day/dark cycles to mature shrimp called nauplii. The cytotoxicity assay was performed on brine shrimp nauplii using Meyer method. [9]

Materials:

Artemia salina Leach (brine shrimp eggs), Sea salt non ionized NaCl, Small tank with perforateddividing dam to hatch the shrimp, Lamp to attract the nauplii, Pipette (1 ml and 5 ml), Micropipette (1-10 micro liter), Glass vials (5ml), Magnifying glass, Test sample for experimental plants^[9]

International Journal of Life Sciences Research

ISSN 2348-3148 (online)

Vol. 3, Issue 2, pp: (93-99), Month: April - June 2015, Available at: www.researchpublish.com

Hatching of Brine Shrimp Eggs:

Artemia salina Leach (brine shrimp eggs) collected from the pet shop was used as the test organism. Simulated sea water was taken in the small tank and the shrimp eggs (1.5gm/L) were added to one side of the tank and this side was covered. The shrimp were allowed to one side of tank and this side was covered. The shrimp were allowed for two days to hatch and mature as nauplii (larvae). Constant oxygen supply was carried out during the hatching time. The hatched shrimps were attracted to the lamp on the other side of the divided tank through the perforated dam. These nauplii were taken for this bioassay. [10] Preparation of the Simulated Sea Water: 38 grams sea salt was weighted accurately, dissolved in 1 liter of sterilized distilled water and then filtered to get clear solution. The p^H of the sea water was maintained between 8-8.5 using 1N NaOH solution. [11]

Preparation of Sample Solution:

At first take 19ml distilled water in beaker add 1ml DMSO (dimethyl sulfoxide) thus prepares stock solution. Clean test tubes were taken. These test tubes were used for different concentration (one test tube for each concentration) of test samples. 4 mg methanolic extracts of *Elatostema papillosum* were accurately weighed and dissolved in 4ml stock solution. Thus a concentration of 1000 μg/ml was obtained which used as an extract solution. Then taking 1ml extract solution from beaker & add 9ml stock solution In vials thus prepared final extract solution. From this extract solution 0.5 μg/ml, 2μg/ml, 4μg/ml, 8μ/ml, 10μg/ml,12μg/ml,20μg/ml,30μg/ml,40μg/ml and 50μg/ml were taken in ten test tubes respectively and adjusted volume 5 ml sea water. Finally 10 nauplii are then applied in each test tubes. [11]

Preparation of Control group:

Control groups are used in cytotoxicity study to validate the test method and ensure that the results obtained are only due to the activity of the test agent and the effects of the other possible factors are nullified. Usually two types of control groups are used-i) Positive controlii) Negative control. [12]

Preparation of Positive Control group:

Positive control in cytotoxicity study is a widely accepted cytotoxic agent and the result of the test agent is compared with the result obtained for the positive control. In the present study, vincristine sulphate was used as the positive control. 3 mg of vincristine sulphate was dissolved in 1.8 ml of distilled water to get a concentration of 5 mg/ml. This was used as stock solution of vincristine sulphate. With the help of a micropipette 500,300,100,50 and $10 \mu l$ of the stock solution were transferred in 6 different vials. NaCl solution (brine water) was added to each vial making the volume up to 5 ml. The final concentration of vincristine sulphate in the vials became $500\mu g/ml$, $300\mu g/ml$, $100\mu g/ml$, $50\mu g/ml$ and $10\mu g/ml$ respectively. The experiment was repeated three times.^[12]

Preparation of negative control:

100 μ l of distilled water, DMSO and ethanol was added to each of the three remarked glass vials containing 5 ml of simulated sea water and 10 shrimp nauplii to use as control groups. If the brine shrimp nauplii in these vials show a rapid mortality rate, then the test is considered as in valid as the nauplii died due to some reason other than the cytotoxicity of the samples. [12]

Application of Brine shrimp Nauplii:

With the help of the Pasteur pipette 15 living nauplii were added to each of the vials containing 5 ml of simulated sea water. A magnifying glass was used for convenient count of nauplii. If the counting of the 15 nauplii was not be possible accurately.^[13]

Counting of the Nauplii:

After 24 hours, the vials are observed using a magnifying glass and the number of survival nauplii in each vial were counted and recorded. From this data, the percentage of mortality of nauplii was calculated for each concentration of the sample. The median lethal concentration (LC_{50}) of the test samples was obtained by a plot of percentage of the shrimps killed against the logarithm of the sample concentration.^[13]

In-Vitro Thrombolytic Study:

Thrombolysis is the breakdown (lysis) of blood clots by pharmacological means. It is colloquially referred to as clot busting for this reason. It works by stimulating fibrinolysis by plasmin through infusion of analogs of tissue plasminogen activator (tPA), the protein that normally activates plasmin.

Preparation of Extract Solution for Thrombolytic Test:

10 mg of the extract was suspended in 10ml distilled water and shaken vigorously on a vortex mixer. Then the suspension was kept overnight and decanted to remove the soluble supernatant, which was filtered through a filter paper (Whatman No. 1). The solution was then ready for in vitro evaluation of clot lysis activity [8].

Preparation of Streptokinase (SK) Solution:

To the commercially available lyophilized SK vial (PolaminWerk GmbH, Herdecke, Germany) of 1,500,000 I.U., 5 ml sterile distilled water was added and mixed properly. This suspension was used as a stock from which 100 µl (30,000 I.U) Specimen of Thrombolytic Test: 3ml blood was drawn from healthy human volunteers without a history of oral contraceptive or anticoagulant therapy (using a protocol approved by the Institutional Ethics Committee of Central India Institute of Medical Sciences, Nagpur). 500 µl of blood was transferred to each of the ten previously weighed alpine tubes to form clots [8]. Test Procedure for Thrombolytic test:

Experiments for clot lysis were carried as reported earlier ^[8]. Venous blood drawn from healthy volunteers was transferred in different pre-weighed sterile Epen drop tube (500μl/tube) and incubated at 37°C for 45 minutes. After clot formation, serum was completely removed (aspirated out without disturbing the clot formed). Each tube having clot was again weighed to determine the clot weight (Clot weight = weight of clot containing tube – weight of tube alone). Each Epen drop tube containing clot was properly labeled and 100 μl of plant extract was added to the tubes. All the tubes were then incubated at 37°C for 90 minutes and observed for clot lysis. After incubation, fluid obtained was removed and tubes were again weighed to observe the difference in weight after clot disruption. Difference obtained in weight taken before and after clot lysis was expressed as percentage. Thrombolytic Activity of ethanol extractof *Elatostema papillosum*leaves clot lysis. Streptokinase and water were used as a positive and negative (non-thrombolytic) control respectively. The experiment was repeated several times with the blood samples of different volunteers.

3. RESULT AND DISCUSSION

Brine Shrimp Lethality Bioassay:

Brine shrimp lethality results of the fraction of *Elatostema papillosum* leaves is shown in Figure 3 and LC_{50} calculated value is recorded in Table 1 and figure 1. The fraction showed potential cytotoxic activity with LC_{50} value of 2467.13µg/ml. Vincristin sulphate served as the positive control for this brine shrimp lethality assay and its LC_{50} value was 10.51µg/ml.So, it is evident that the ethanol extract of Elatostema papillosum have low cytotoxic activity.

Conc Nauplii no Live nauplii Log C % of Mortality LC 50 µg/ml 10 10 0 10 1 50 10 1.69897 10 22.36 100 10 8 2 20 200 10 8 2.301 20 500 10 6 2.69897 40

Table 1: Cytotoxic activity of Elatostema papillosum leaves

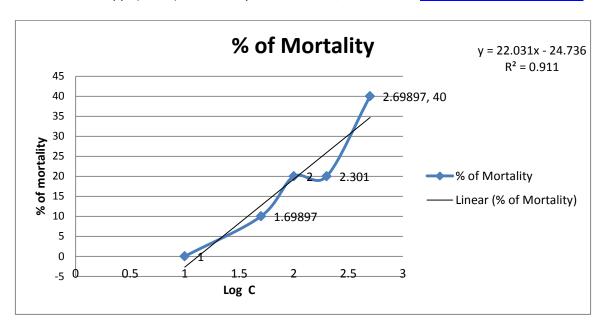


Figure 1: Determination of LC_{50} value for fraction of Elatostema papillosum from linear correlation between log concentrations versus percentage of mortality.

Thrombolytic Activity:

The ethanol extractof *Elatostema papillosumleaves* is exerted 48.87% lysis of the blood clot in thrombolytic activity test while 75.18% were obtained for positive control (streptokinase) and 15.82% were obtained for negative control respectively which has shown in table 2. So, the extract possessed considerable thrombolytic activity.

Table 2: Thrombolytic Activity of Elatostema papillosum

Name of sample	Percentage of lysis
Elatostema papillosum	50.86
Streptokinase	85.25
Water	7.75

Figure 3.2: Ethanol extractof *Elatostema papillosum* thrombolytic effect compared with standard (Streptokinase) and negative control

Discussions:

Plant-derived medicines have a long history of use for the prevention and treatment of human diseases. Today, many pharmaceuticals currently approved by the Food and Drug Administration (FDA) have origins to plant sources. A major

role for plant-derived compounds based on the reported immunemodulatory effects has emerged in recent times and has led to the rigorous scientific examination to determine efficacy and safety. A number of plants source especially several leaves and vegetables have been studied for their supplements having anticoagulant, antiplatelet and fibrinolytic activity and there is evidence that consuming such food leads to prevention of coronary events and stroke. Some of these plant products are modified further with recombinant technology to make them more effective and site specific. In our thrombolytic assay, the comparison of positive control with negative control clearly demonstrated that clot dissolution does not occur when water was added to the clot. When compared with the clot lysis percentage obtained through SK and water, an extremely significant thrombolytic activity was observed after treating the clots with C. arborea, chloroform fraction. Cell surface bound plasminogen is easily activated to plasmin, which could lead to fibrinolysis. Bacterial plasminogen activator: staphylokinase, streptokinase, act as cofactor molecules that contribute to exosite formation and enhance the substrate presentation to the enzyme. Staphylokinase activates plasminogen to dissolve clots, also destroys the extracellular matrix and fibrin fibers that hold cells together. Toxicity of plant materials is a major concern to scientists and medical practitioners and therefore cytotoxic assay was conducted in this study to determine the toxicity profile of the plant extracts through the Brine Shrimp Lethality (LC₅₀, 24 h) test. Lagarto demonstrated a good correlation $(r^2 = 0.91)$ between the LC₅₀ of the brine shrimp lethality test and the acute oral toxicity assay in mice. Based on that correlation, brine shrimp lethality LC₅₀< 10 μg/ml (LD₅₀ between 100 and 1000 mg/kg) is considered as the cut off value of cytotoxicity. According to the measured LC50 values of the extracts no one was found severely lethal or toxic to be processed as pharmaceutical products in thrombolytic uses. However, the extremely significant effect of Elatostema papillosum demonstrates it to be the best thrombolytic component for further processing.

4. CONCLUSION

From the above study it can be concluded that ethanol extract of *Elatostema papillosum*may be a potential candidate for future thrombolytic agent. Furthermore study and isolation is needed to obtain site specific and more potent agent that causing this effect. The test was made under full concentration to develop a new compound. I found that the extract I choose, was quite good in use. At the conclusion I can recommend that this plant part is useful for further use and isolation. The thrombolytic and cytotoxic study was close to the standard used. The thrombolytic potency of *Elatostemapapillosum* is found 50.86% and the standard have 85.25%. It seems good result or may be said significant as the extract was the mixture of many phytochemical, it shows nearby percent of clot lysis. The cytotoxic result obtained 2467.13µg/ml(LC₅₀). At present scientist give their best regard in developing a more potent and site specific drug in the treatment of cancer. Nature could be a great source in this purpose. Most of potent drugs are using came from nature, either directly or in their derived form. In this regard my study can help to find a new lead compound for future drug discovery. Here experimental studies of leaves extract exhibited considerable thrombolytic and cytotoxic activity and moderate activity. So, further comprehensive pharmacological and phytochemical investigations are needed to elucidate the specific chemical compounds responsible for cytotoxic and thrombolytic activities and their mode of actions. The long term toxic effect and its protective effects should also be elucidated.

ACKNOWLEDGEMENTS

Authors are grateful to Department of Pharmacy, International Islamic University Chittagong for giving all facilities to carry out whole project. Authors are also thankful to Dr. Shaikh Bokhtear Uddin, Associate Professor, Department of Botany, and University of Chittagong for identifying plants. Authors also acknowledge the volunteer blood donors for cooperation in the project. The total research work was supported by Department of Pharmacy, International Islamic University Chittagong, Bangladesh. This project was an integral part of academic degree of B. Pharm student.

REFERENCES

- [1] S.M.K. Rates: Review Plants as source of drugs. Toxicon 39 (2001) 603–613.
- [2] Hamburger M., Hostettmann K. Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry, 1991. 30: 3864-3874.
- [3] Archana, Suresh Jatawa, Rajkumar Paul and ArchanaTiwari, 2011. Indian Medicinal Plants: A Rich Source of Natural Immuno-Modulator. International Journal of Pharmacology, 7: 198-205.

International Journal of Life Sciences Research

ISSN 2348-3148 (online)

Vol. 3, Issue 2, pp: (93-99), Month: April - June 2015, Available at: www.researchpublish.com

- [4] Sanjay Patel, NiravGheewala, Ashok Suthar, Anand Shah. IN Vitro Cytotoxicity Activity of SolanumNigrum Extract Against Helacell Line and Vero Cell Line. Int J Pharm Pharm Sci,2009;1. Suppl 1.
- [5] Md. Hassan Kawsar, Md. Al Amin Sikder, Md. Sohel Rana, Ishrat Nimmi and Mohammad A. Rashid. Studies of Thrombolytic, Antioxidant and Cytotoxic Properties of Two Asteraceous Plants of Bangladesh. Bangla JOL, 2011;14(2).
- [6] aSchaper & Brummer GmbH & Co. KG, Postfach 611160, D-38251, Salzgitter, Germany. Proposed Guidelines for Commercial Collection of Medicinal Plant Material. Journal of Herbs Spices & Medicinal Plants, 2000, Volume 7, Issue 1.
- [7] Sweta Prasad, Rajpal Singh Kashyap, Jayant Y Deopujari, Hemant J Purohit, Girdhar M Taori and Hatim F Daginawala. Effect of Fagonia Arabica (Dhamasa) on in vitro thrombolysis. BMC Complementary and Alternative Medicine 2007, 7:36.
- [8] M.M Mackeen, A.M Ali, N.H Lajis, K Kawazu, Z Hassan, M Amran. Antimicrobial, antioxidant, antitumour promoting and cytotoxic activities of different plant part extracts of Garciniaatroviridis Griff. ex T. Anders. Journal of Ethnopharmacology.2000;72(3): 395–402.
- [9] Hossain MS, Hossain MA, Islam R, Alam AH, Kudrat-e-Zahan, Sarkar S. Antimicrobial and cytotoxic activities of 2-aminobenzoic acid and 2-aminophenol and their coordination complexes with Magnesium (Mg-II). Pak J Biol Sci. 2004; 7:25–7.
- [10] Islam MA, Sayeed MA, Islam MA, Khan GR, Mosaddik MA, Bhuyan MS. Terpenes frombark of Zanthoxylumbudrunga and their cytotoxic activities. Rev Latinoamer Quím. 2002;30:24–8.
- [11] M. AshikMosaddik, M. Ekramul Haque Cytotoxicity and antimicrobial activity of goniothalamin isolated from Bryonopsislaciniosa. Phytotherapy Research 2003; 17(10):1155–1157.
- [12] Robin J. Marles, Norman R. Farnsworth, David A. Neill.Isolation Of A Novel Cytotoxic Polyacetylene From A Traditional Anthelmintic Medicinal Plant, Minquartiaguianensis. J.Nat. Prod., 1989;52 (2): 261–266.